National Research Council of Italy

Istituto di Ricerca per la Protezione Idrogeologica

Freie Universität Bozen Libera Università di Bolzano Free University of Bozen • Bolzano

Geomorphic change detection in small Alpine basins using LiDAR DTMs

EGU General Assembly 2013

Beatrice Goldin¹, Marco Cavalli¹, Francesco Comiti², Lorenzo Marchi¹

¹ CNR IRPI Padova ² Free University of Bozen - Bolzano

Vienna, 09/04/2013

- The assessment of geomorphic changes allows to identify unstable areas, to quantify processes intensity, and to estimate volumetric changes through time (i.e. sediment budgets);
- Digital elevation models built from repeated topographic surveys can be used to produce DEM of Difference (DoD) maps;
- LiDAR technology provides Digital Terrain Models at high spatial resolution and over large spatial extents;
- Due to individual DTM quality and uncertainty, geomorphic change detection through DoD is not a straightforward approach.

Study area

Gadria and Strimm catchments (Eastern Italian Alps)

Strimm: area 8.5 km², average slope 61.8%, range in elevation 1394 – 3197 m.

LiDAR data

area < 2000m:

area > 2000m:

8 pts/25m²

3 pts/25m²

LiDAR July 2005

- LiDAR regional survey
- Survey sensor: ALTM 3033 (OPTECH) and Falcon II
- Accuracy: GPS-RTK surveyed ground control points in stable areas

Statistics	2005
Number of points	9
RMSE	0.29

- Spatially distributed error in DTMs
- Point density: 0.5 pts/m²

¬TM: 2m

- **Survey sensor:** RIEGL LMS Q560. Uniform density acquired: >8 pts/m²
- Accuracy: GPS-RTK surveyed ground control points (in easily accessible areas below 2000 m)

Point density: 2.32 pts/m²

• **DTM**: 2m

Statistics	2011
Number of points	22
RMSE	0.16

Membership f

Membership f

00

Difference of DTM - 1

Errors of DTM (survey techniques, surface interpolation methods, morphology representation) are likely to propagate significantly into estimates of sediment budget and confound a clear geomorphic interpretation.

To distinguish real changes from noise in DoDs, a threshold derived from a global measure of surface guality is needed \rightarrow **fuzzy logic** (Wheaton et al., 2010):

- 1) Quantifying uncertainty: calculation of a spatially variable δz in each input DTM using a <u>Fuzzy</u> Inference System (FIS) based on:
- Definition of Membership Functions for inputs/outputs;
- Definition of rules relating input to output (es. high point density + low slope = Low Elevation Uncertainty)

Difference of DTM - 2

(2) Propagating uncertainty into DoD: propagation of FIS-predicted δz from each DTM into DoD δ (DoD)

$$\delta u_{DoD} = \sqrt{\left(\delta z_{new}\right)^2 + \left(\delta z_{old}\right)^2}$$

- δZ_{old} = Individual error old DTM
- $\delta_{Z_{new}}$ = Individual error new DTM

 δu_{DoD} = Propagated error into the DoD

(3) Conversion of $\,\delta(DoD)\,$ to a DoD probability raster using a T-test

$$t = \frac{|z_{DEM_{new}} - z_{DEM_{old}}|}{\delta u_{DoD}}$$

Probability of DoD predicted elevation changes is calculated relating t-statistic to its cumulative distribution function

(4) Assessing the significance of DoD uncertainty: applying a confidence interval threshold LoD to DoD (90%)

Although based on surface quality, DoD needs a supervised control because of:

- 1. Different DTM filtering;
- 2. Co-registration of the different flightlines;
- 3. Horizontal error moreover in high slope areas.

Starting from the DoD, areas with real variations were selected using hillshade and orthophoto and a spatial mask was created to make zonal statistics on volume distributions.

(ED 30 Autonomous Province of Bolzano)

Gadria

n	Type of event	Date	Volume (m ³)
1	Debris flow *	2006	700
2	Debris flow	18/05/2006	10000
3	Debris flow	25/07/2006	35000
4	Debris flow *	10/08/2007	7000
5	Debris flow *	06/08/2008	39000
6	Debris flow	24/07/2009	38200
7	Debris flow **	12/07/2010	21000
8	Debris flow	05/08/2011	3500
Tot erosion			139300
Tot deposition within the catchment			15100

Strimm

n	Type of event	Date	Volume (m ³)
9	Debris flow	06/08/2008	1000
10	Debris flow	24/07/2009	3000
11	Debris flood	13/06/2010	700
12	Debris flow **	12/07/2010	15000
13	Debris flow *	01/10/2010	3500
14	Flood	27/05/2011	2500
Tot	erosion	24000	
Tot	deposition within t	1700	

* Uncertain date

**Difficult estimation of the contributions of two contemporary events (Rio Gadria and Rio Strimm).

Results – DoD vs Historical data Gadria

Results – DoD vs Historical data Strimm

Error

Volume

18,589

2,101

18,708

±

-2 0

Results – DoD vs Historical data Strimm

Results – DoD vs Slope-Area

- Different pattern for the basins
- Erosion processes even for higher drainage area values
- In the Strimm, erosion processes at low slope values
- Strong gradient change in the final section of Strimm

- Erosion prevails on negative values (fluvial dominated processes)
- Deposition prevails on positive values (ridges/ hillslope/diffusion processes)
- Erosional processes even in convex area

- A spatial distribution error approach is necessary, moreover when using DTMs at different accuracy;
- DoD results are consistent with observed data at basin scale;
- DoD results in higher volumes than field surveys providing useful information on undetected events within the basins and helping in the identification of erosional and depositional processes in uneasily accessible areas;
- Analysis of the relationship between geomorphometric parameters and DoD opens new perspectives for the interpretation of erosional and depositional pattern at the catchment scale.

15

Questions?

Contact: beatrice.goldin@irpi.cnr.it