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Sediment connectivity plays a significant role in geomorphic systems since it reflects the potential of sediment, deriving from soil erosion and Application to the Venosta Valley
g remobilization of storages, to be transferred within or between landscape compartments. Understanding sediment movement and delivery to given ) . }N\ ,. —
=l areas of interest or sinks (e.g. channel network, urbanized area, catchment outlet) is an important issue for efficient management strategies. Thanks Manninﬁs" Eﬂﬁ;hness S s Mg"v‘;‘g'zv'fwg“"ess - IC values are classified in four classes with the
S to the availability of high-resolution Digital Terrain Models (DTMs) different methods for mapping connectivity have been developed, but few gm’ low s Jenks Natural Breaks algorithm;
-8 examples of their application over large areas are available so far. In this study, a GIS-based model of sediment connectivity developed following the =l T - IC increases approaching the outlet when this is
4;-;- approach of Borselli et al. (2008) with ad hoc refinements devised to adapt the model to mountain catchments using high-resolution DTMs (Cavalli et e i chosen as target;
=W al., 2013), has been applied to the upper and middle sectors of the Venosta Valley (1096 km?) in the Eastern Italian Alps. The main objective of the - a greater variability characterizes the connectivity

computed with respect to the Adige River;
- application to the Venosta Valley depicts realistic

study is to test the applicability of the model to a regional context which includes areas with a large variability in topography and land use.

The connectivity index IC is aimed at evaluating the potential connection between hillslopes and features acting as targets (e.g. catchment outlet,

. . . . . connectivity patterns showing very low values in
roads) or storage areas (sinks, retention basin) for transported sediment. IC consists of two components: R/ _ y P _ J Y
> the Adige floodplain;
~ .
ol Upslope component D! is the potential for downward routing due Downslope component D, is the sinking potential due to the path length d, - Steep and large alluvial fans that occupy the
'8 to upslope catchment area A, mean slope S and an impedance iImpedance factor W and slope S along the downslope path. valley floor favor the coupling of the upstream
g factor W. o d; catchments and of the opposite hillslopes with the
g Dup=WS\/Z 5 an—z W:S; Adige River.
- IC is defined as: IC= Iong—uP I
dn
In the application to the Venosta valley two different impedance factors (W) were tested: one based on the surface roughness (Cavalli et al., 2013) IC vs. catchment size Manning’s n vs. topographic roughness

and one derived from tabled values of hydraulic roughness (Manning’s n).
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— — - The index shows a strong dependency on catchment size; _ o " _ gs i disolay | C val
— | o | S . . . - In particular, areas with vegetation cover display lower values
7 a ; - highest IC values characterize debris-flow catchments; P _ J _ piay
| . . whereas higher values can be found in bare ground areas (e.g.
- - data show a positive correlation between Ddn and catchment area whereas _ _ _ _
| o | . . rocky outcrop) if compared with IC computed with roughness index.
| no relationship is observed between Dup and catchment area.
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$) 5 Q | | | | | | « The application of the model over a large spatial scale gives a realistic spatial characterization of sediment connectivity and highlights the role of the
© | o G utlet e . . N . - . . L .
; e o e v 2 alluvial fans in conditioning connectivity of upstream catchment: the model has proved very promising for a rapid spatial characterization of sediment
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% =¥ + the proposed sediment connectivity appears slightly dependent from DTM resolution, whereas a strong dependency on catchment size is observed,
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Cell size Cell size mainly due to the downslope component of the index. This result suggests that the model can be used to compare guantitatively only catchments of
- IC applied to the whole study area to investigate IC vs DTM - simplification of the flow paths due to increased cell size leads to an similar size.
resolution relationship; increase of IC values: "
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- slight increase in IC values with decreasing resolution, more evident - on the contrary, a decrease of IC values can be noted in steep slopes § Borselli L., Cassi P., Torri D., 2008. Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena, 75(3), 268-277.
for the application of IC with regard to the Adige River. likely due to the lower slope values derived from lower resolution DTM. :‘3 Cavalli M., Trevisani S., Comiti F., Marchi L., 2013. Geomorphometric assessment of spatial sediment connectivity in small alpine catchments. Geomorphology, 188,31-41.




